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Abstract: Software-Defined Networking (SDN) is an important technology that enables a completely new approach in how we develop and
manage networks. SDN divides the data plane and control plane and promotes logical centralization of network control so that the dedicated
controller can schedule the data in the network effectively primarily through OpenFlow protocol. The impact of network topology on SDN
controller performance can be very significant. This paper is a contribution towards the performance evaluation of scalability of the open-
source RYU SDN controller by implementing multiple network topology scenarios experimented on the Mininet emulation software. RYU
SDN controller is tested by analyzing throughput of the controller and checked its performance in diversified networking scenarios by
specifically increasing the number of network nodes (switches and hosts). Further, the authors have provided an extensive idea of how to
create an experimental SDN testbed along with analysis of obtained results keeping the networking throughput performance and scalability
as the focal point.
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1. INTRODUCTION

Software-Defined Networking (SDN) is an emerging computer network technology to mitigate the current challenges of
traditional TCP/IP networks, which suffer from inflexibility in management and higher maintenance cost. The new SDN
concept provides a global view of the network and facilitates centralized management through the programmable control
plane, making the network more flexible to deploy different functions [1]. The SDN introduces a separation of data plane and
control plane. While the data plane resides in the network elements, i.e., switches, the control plane is logically centralized
and implemented as an SDN controller software running on one or more servers. In order to allow an exchange of information
between these two planes, a communication protocol for this Southbound API [2] is required. Nowadays widely used
OpenFlow protocol is such an open-source communication protocol, which enables vendor-independence on both planes [3].
The basic fundamental characteristic of SDN is the separation of the forwarding and control planes. Forwarding functionality,
including the logic and tables for choosing how to deal with incoming packets, based on characteristics such as MAC address,
IP address, and VLAN ID, reside in the forwarding plane [4]. The fundamental activities performed by the forwarding plane
can be described by how it dispenses with arriving packets. The control plane of SDN containing one or multiple controllers
is responsible for monitoring network states and determining network management strategies, such as the forward strategies
of user flows. Benefited from the simplified design of data forwarding devices and the direct control over network behavior
at controllers, SDN is capable of facilitating flexible network management.
While the SDN architecture appears to solve problems within the traditional network architecture, it also comes with some
major challenges. In this paper, we highlight one of these challenges, which is related to the controller scalability feature.
Topology discovery and controller scalability are crucial for successful production deployments of OpenFlow-based SDN
networks. To evaluate SDN controller scalability, several solutions have been introduced over the past years. Separating the
forwarding plane from the control plane and taking it on a remote system will generate questions on its capabilities of scaling
on various network topology scenarios. Due to the intensive evolution and growth of SDN controllers in the market, this paper
aims to present an extensive study on the performance and scalability of an open-source Python-based RYU controller
available in the existing literature. RYU controller is tested by analyzing the throughput and checked its performance in
diversified networking scenarios by specifically increasing the number of network nodes (switches and hosts). This paper will
serve as a guideline to the SDN community to benchmark different SDN controllers.



The rest of this paper is organized as follows. Section 2 introduces a brief background about SDN architecture, OpenFlow,
and RYU controller features. Section 3 presents details about the simulation environment, research methodology and metrics.
Section 4 provides the obtained experimental results and evaluation of scalability statistics followed by conclusions, future
works and references.

2. SDN BACKGROUND

2.1 SDN layered architecture

The architecture of the SDN can be divided into three planes: application plane, control plane, and data plane. SDN
architecture concept of computer networks is based on the application of technology separating the control plane from the
data plane. The relationships between SDN planes can be seen in Fig. 1 (left), which shows a basic overview of a typical SDN
layered architecture.

Figure 1: SDN referenced architecture (left) and SDN controller architecture (right)

The application or management plane interacts with the control plane to program the whole network and enforce different
policies. Through the programmable platform provided by the control layer, the application plane can access and control
switching devices at the infrastructure layer. Examples of SDN applications could include network monitoring, access and
traffic control, mobility management, load balancing, and network virtualization. The interaction among application and
control layers is done through interfaces that work as communication protocols. Application plane logic can be implemented
directly through applications on top of controllers, which communicate through NorthBridge Application Programming
Interface (NBI API) such as REST/RESTful, JSON, etc. [5].
The control plane is implemented through one or more logically centralized controllers. Control functionality is removed from
network devices, that will afterward become simple packet forwarding network nodes. We usually have routing functionality
in mind when talking about the control plane, but in reality, the control plane protocols perform numerous other functions
including: interface state management, connectivity management, topology or reachability information exchange, adjacent
device discovery, and service provisioning [6]. The control layer bridges the application plane and the data plane, via its two
interfaces. For downward interacting with the data plane (i.e., the SouthBound interface SBI), it specifies functions for
controllers to access functions provided by switching devices. The functions may include reporting network status and
importing packet forwarding rules. As previously mentioned, for upward interacting with the application plane the control
plane uses NBI APIs. Since multiple controllers will exist for large network domains, an east-west API interface among the
controllers will also be needed to share network information and coordinate their decision-making processes.
The SDN network comprises interconnected forwarding devices, which represent the data plane. Switches only perform
actions depending on the controller. The interface that they use to communicate with the controller is called the SBI API. The
main function of the SDN switching device is packet forwarding. Specifically, upon receiving a packet, the switch first
identifies the forwarding rule that matches with the packet and then forwards the packet to the next-hop node. Compared to
packet forwarding in traditional TCP/IP networks, SDN packet forwarding can also be based on other parameters, for example,
TCP/UDP port, VLAN tag, and ingress switch port [7]. The principal role of the data plane is to keep current information in
the forwarding table so that the data plane can independently handle as high a percentage of the network traffic as possible.



2.2 SDN Controller and OpenFlow protocol

The controller is the most important component in the SDN architecture, where the complexity resides. We have noted that
the controller maintains a view of the entire network, implements policy decisions, controls all the SDN devices that comprise
the network infrastructure, and provides NBI API for applications. Controllers often come with their own set of common
application modules, such as a learning switch, a router, a basic firewall, and a simple load balancer. These are SDN
applications, but they are often bundled with the controller. Fig. 1 (right) depicts the modules that provide the core
functionality of the controller, both NBI and SBI API, and a few applications that might use the controller.
The SDN controllers have two operational modes, reactive and proactive. In the reactive mode, packets of each new flow
coming to the switch are forwarded to the controller to decide how to manage the flow. This approach takes considerable time
while installing rules. The amount of latency can be affected by the resources of a controller, their performance, and the
controller-switch distance. In the proactive mode, rules are already installed in the switches and therefore the numbers of
packets that send to the controller are reduced. In this approach, the performance becomes better and therefore the scalability
[8]. One of the key controller functions is to translate application requirements into packet forwarding rules. This function
dictates a communication protocol (programming language) between the application layer and the control layer. Strategies to
design high-level languages for SDN controllers take at least two formats. One strategy is to utilize existing high-level
languages, such as C++, Java, and Python, for application development. The other strategy adopts a clean-state design to
propose new high-level languages with special features to achieve efficient network behavior.
Further, the core functions of the controller are topology and device discovery and tracking, flow management, device
management, and statistics tracking. These are all implemented by a set of modules internal to the controller. All the controller
functions are implemented via changeable modules, and the feature set of the controller may be adjusted to specific
requirements of SDN networks. The controller tracks the topology by learning of the existence of OpenFlow switches and
other SDN devices and tracking the connectivity between them. Network traffic analysis can be performed in real-time using
machine learning algorithms, databases, and other specific software tools.
Various open-source and commercial controllers are being used for deploying SDN network architecture - POX, RYU,
FloodLight, ONOS, ODL, OpenDayLight, etc. [9]. SDN controller software is specific, and in some product offerings, both
OpenFlow and alternatives coexist on the same controller. OF-Config and Open vSwitch Database Management Protocol
(OVSDB) are both open protocols for the SBI [10]. There is a lack of a standard for the NBI, which has been implemented in
several different forms. For example, the FloodLight and OpenDayLight controllers both use a Java and REST/RESTful API
for applications running on separate machines, Ryu and POX use Python API, etc.
OpenFlow is a protocol that describes the communication between OpenFlow switches and a controller. OpenFlow modifies
the SDN network in the way that data plane elements become simple devices that forward packets according to rules given
by the controller. The main components of a controller-based SDN network are OpenFlow switches. Each OpenFlow switch
dynamically maintains a flow table, which consists of flow rules (entries) that determine the handling of packets. Each entry
in the flow table has three parts, “header” for matching received packets, “action” to define what to do for the matched packets,
and “statistics” of the matched traffic flow [11]. The OpenFlow protocol offers suitable flow table manipulation services for
a controller to insert, delete, modify, and lookup the flow table entries through a secure TCP channel remotely. The OpenFlow
specification is continuously evolving with new features in every new release. With more and more vendors releasing their
OpenFlow-enabled products and solutions, more software projects are being developed based on OpenFlow specifications.

2.3 RYU SDN controller

Ryu controller is an open-source and component-based SDN framework fully implemented in Python. Source code can be
found on GitHub, provided and supported by Open Ryu community [12]. The architecture of a RYU controller is shown in
Fig. 2. RYU SDN controller has three layers. The top layer consists of network logic applications known as the application
layer. The middle layer consists of network services known as the control layer, and the bottom layer consists of physical and
virtual devices know as an infrastructure layer.
Ryu uses OpenFlow protocol to associate with the switches to modify how the network will manage traffic flows and allows
an event-driven programming principle. Ryu provides software components with well-defined APIs that make it simple to
create control applications and SDN network management. In respect of support for SBI protocols, RYU is working with
various protocols for managing network infrastructure, such as Open vSwitch Database Management Protocol (OVSDB),
Netconf (RFC 6241), OF-config, XFlow etc. [13, 14]. The purpose of these protocols is to gathered network intelligence by
using a controller core, performed analytics and statistics, and synchronized the new network rules. The controller uses NBI
APIs such as REST/RESTful, REST/RPC user-defined APIs and provides a set of specific components such as
OpenStack/Quantum virtualization, Firewall, OFREST, etc. for SDN applications. RYU is distributed with multiple
applications such as a simple L2 switch, router, tenant isolation, firewall, GRE tunneling, VLAN networking, etc. Ryu
applications are single-threaded entities, which implement various functionalities.



Figure 2: RYU Controller Architecture

The module called ryu.controller.ofp_event exports event classes that describe receptions of messages from connected OF
switches. To preserve the order of events, each RYU application has a receive FIFO queue for events. The thread’s main loop
pops out events from the receive queue and calls the appropriate event handler. Hence, the event handler is called within the
context of the event-processing thread, which works in a blocking fashion, i.e., when an event handler is given control, no
further events for the RYU application will be processed until control is returned.

3. SIMULATION SETUP AND METRIC

The simulation hardware and software specifications are shown in Table 1. Controller scalability analysis were performed in
an environment of a Windows 10 Operating System (OS). The VirtualBox 6.1.22 hypervisor is used to instantiate a Virtual
Machine (VM) which is allocated 16 GB of RAM, and run on Xubuntu 20.04 VM contains Mininet with predefined Ryu
controller software. Secure Virtual Machine Mode option must be enabled in BIOS setup due to supporting AMD-V
virtualization mode.

Table 1: Simulation hardware and software specifications

PC Virtual Machine

Hardware
Processor AMD Ryzen 5 3600, 3.6 GHz (6-core) 1 CPU, 6-core

RAM 16 GB DDR4, 3200 MHz 8 GB DDR4

Software

OS Windows 10, ver. 21H1 Xubuntu, 20.04.1 (64-bit)
VirtualBox - 6.1.22

Mininet - 2.3.0d6
Ryu Controller - 4.3.2

Python - 3.8.5

Simulation is being done on the software known as the Mininet emulation tool. Mininet is a Python-based and open-source
network simulator for prototyping a large OpenFlow network. By default, Mininet creates the virtual switch in OpenFlow
mode and supports various controllers including OpenFlow reference controller and OVS controller [15]. A virtual network
is created according to specified links, hosts, switching devices and controllers. A Command Line Interface (CLI) is provided
to interact with the virtual network, for example, checking connectivity between hosts, checking network flows, devices status
monitoring etc. Mininet comes with built-in controller classes to support various controllers which include the OpenFlow
reference controller. Also, Mininet contains a number of default topologies such as minimal, single, reversed, linear and tree,
and provides an easy way to experiment with various custom network topologies. It is possible to develop and test code on
Mininet, and OpenFlow controller or switch can simply implement into a real networking environment.
In this paper, we have considered Fat-Tree-Based custom topologies for simulation, each one with the various number of
OpenFlow switches and hosts. Fat-Tree-Based topology was chosen for simplicity and to ensure that all switches are well-
exercised and because it is the most popular in data centers, as shown in Figure 3. This topology has three switch layers
including edge, aggregation, and core switches. Edge switches are directly connected to hosts in a way that N ports of the
switch are connected to N/2 hosts and the rest are connected to higher level switches called the aggregation switches. In the
same manner, the aggregation switches are connected to core switches [16]. All the OpenFlow switches and hosts are
connected with each other in a hierarchical form. In this topology, there are several paths between every two hosts which
increases fault tolerability.



Python 3.8.5 version is used to write the custom topology code. Mininet CLI is used to implement and test the topology. Due
to the topology complexity, we used a Mininet high-level API. We use Topo as the base class that provides the ability to create
parameterized network topology. We use methods self.addSwitch() and self.addHost() to import switches and hosts into
topology and connect them. Method self.addLink(node1, node2,**link_options) is used for adding a bidirectional link that
contains host and switch names and the number of options such as link bandwidth or delay. There are two classes available
such as CPU Limited Host and TC Link that can be used for performance limiting and isolation. There number of ways that
these classes may be used, but a simple way is to specify them as the default host and link classes to Mininet(), and then to
apply the appropriate parameters in the topology.

Figure 3: Fat-Tree-Based simulation network topology

To evaluate the statistics related to the scalability performance of Ryu controller, custom Fat-Tree topology is implemented
with four scenarios having a difference in the number of OpenFlow switches and hosts connected to each edge-layer peripheral
switch, as shown in Table 2. For each scenario, the total number of links in the topology is also shown.

Table 2: Network topology scenario table for simulation

Scenario Number of switches Number of hosts Number of links

Scenario 1 6 8 16
Scenario 2 15 50 100
Scenario 3 30 200 400
Scenario 4 45 450 900

By Mininet all the hosts in topology have been assigned a unique IP address from 10.0.0.0/24 address range and a unique
MAC address. The IP/MAC addresses are 10.0.0.1/00:00:00:00:00:01 for host h1, 10.0.0.2/00:00:00:00:00:02 for host h2,
etc. To make OpenFlow switches connect to the RYU controller, we have used 127.0.0.1 virtual loopback IP address and
5566 port number.
The main objective of this paper is to evaluate the throughput parameter for TCP traffic in predefined SDN topology. The
controller in SDN topology uses RYU handlers and decorators for sending OpenFlow messages between the nodes. We used
the iPerf networking tool to test network throughput between the end hosts [17]. A typical iPerf output contains a timestamped
report of the amount of data transferred through the network. In our throughput simulation test, the RYU controller is evaluated
for the maximum amount of data it can process in a second between two end hosts which act as server and client. Making a
TCP client-to-server connection, iPerf has executed in 50 sec. on the client host, and data have been collected every 1 sec. on
the server host. TCP packets are sent from the client to the server host for a default 85.3 KB window size.

4. EXPERIMENTS AND EVALUATION

This section provides the results obtained during the experimentation and has four graphs that represent results for each
scenario listed in Table 2. To evaluate the performance of Ryu controller in an experiment concerning scalability, throughput
is the best matching parameter that will suffice our aim of the experiment. Consequently, in this section, we have limited the
study to controller throughput only.
Graph of Fig. 4 (left) shows the results obtained by performing TCP data transmission between client and server for scenario
1. To measure controller throughput, the IPERF test has been executed in 50 sec. on the client h8, and data have been collected
every 1 sec. on the server h1. It is observed from the graph that the average throughput stays at 25.36 Gbps. The graph also



shows that the throughput variations are quite uniform within 50 sec of simulation, and are in the range between 25 and 26
Gbps. Most of the time simulation was running well, except for the intensive drop that occurs at 30 sec. of simulation.
Similarly, the controller scalability is disputable if we look at Fig. 4 (right) which demonstrates the TCP throughput graph of
scenario 2, with 15 switches and 50 hosts. It is slightly worst as far as stability is concerned in comparison to scenario 1. As
in the previous case, the simulation has executed in 50 sec. on the h50 host, and data have been collected on the server h1. It
is calculated from the graph that the average throughput stays at 24.36 Gbps, which is approximately 4% less than in the
previous scenario. Significant throughput drops occur at 6 sec., 31 sec. and 38 sec. of simulation, leading to degraded
performance of the simulation run.

Figure 4: Throughput for topology scenario 1 (left) and scenario 2 (right)

Figure 5: Throughput for topology scenario 3 (left) and scenario 4 (right)

Fig. 5 (left) shows the throughput of topology scenario 3, with 30 switches and 200 hosts. During the first half of the
simulation, h1-h200 TCP flow was running well but by the end of simulation multiple and intensive dropping instances were
observed frequently leading to degraded throughput in the second half of the simulation run. As in the previous two scenarios,
the simulation has executed in 50 sec. on the h200 host, and data have been collected on the server h1. It was observed that
the average throughput for this scenario was dropping and stays at 22.16 Gbps, which is 12.6% less than scenario 1 average
throughput.
Fig. 5 (right) presents TCP throughput results for scenario 4 with 45 switches and 450 hosts. As can be seen from the graph,
there are intensive throughput variations during all the simulation time. The average throughput for scenario 4 is 19.34 Gbps,
which is 23.7% less than scenario 1 average throughput. A large average throughput drop of the controller indicates its
overload in a situation where exist SDN network with a significantly larger number of switches and hosts.
The concern with a proposed SDN topology with a large number of switches and hosts (scenarios 3 and 4) is that this requires
the RYU controller to send packet_out messages to every host and processing packet_in messages coming from every host
for each link in both directions. With these graphs shown from Fig. 4 and Fig. 5, it was observed that RYU is a very much
resource demanding controller which uses CPU and RAM utilization to optimum and thus results in a degraded performance
in presence of an increasing number of switches and hosts. We limited the study to 45 switches and 450 hosts because even
AMD Ryzen 5 3.6 GHz processor with 16GB RAM was proved not enough during the execution of experimentation. We
decided to do the same simulation with 60 switches and 800 hosts, but Mininet always crashes. We tried to repeat this
simulation three more times to confirm whether this phenomenon is accidental or not, and we always got the same results.



From the obtained scenarios results, the conclusion is that the continuous polling of data causes overload on the RYU
controller. This is because having a large number of OpenFlow switches causes conflict at the data plane which demands high
processing power.
Another important factor is to observe the hop count number of the path between network nodes. Again, a test was performed
at a scale with 800 hosts and 60 switches. This was scaled up to 20.000 paths with intensive degradation in controller
performance. The RYU controller was not able to handle significantly large packet_in rates. This type of data shows that the
RYU controller is more suitable for delay-sensitive applications, as well as for less complex SDN networks with a smaller
number of OpenFlow switches and hosts.

5. CONCLUSIONS AND FUTURE WORKS

While the SDN architecture appears to solve problems within the traditional TCP/IP network architecture, it also comes with
some major challenges. In this paper, we highlight one of these challenges, which is related to controller scalability. With this
paper, the authors have attempted to address the scalability features of the RYU controller by implementing various topology
scenarios in a simulation environment. The authors have provided a clear procedure of how to create an experimental testbed
along with analysis of obtained statistical results, keeping the throughput performance as the central focus.
The evaluation focused on the TCP flows throughput between end hosts and packet-in/packet-out messages that are generated
when a controller receives packets from hosts. As it was insufficiently unclear how the SDN topology affects the controller
scalability, four different topology scenarios were studied. These topologies vary with respect to their link density as well as
with the number of switches and hosts present in the network (maximum number of switches, hosts and links are 60, 450 and
900 respectively). From the throughput measurements of the TCP flows, the throughput values decreased as the number of
switches and hosts are increased in the network. For a scenario 4 topology with 45 switches and 450 hosts, the RYU controller
shows 23.7% lower throughput than scenario 1 with only 6 switches and 8 hosts. The difference in throughput behavior for
the RYU controller can be caused by two factors: the first one is the algorithm that a controller uses to distribute the messages
between controller and hosts, and the second one is the mechanisms and libraries used for the interaction between the network
and the controller. The obtained experimental results show that RYU controller exhibited better results for less complex SDN
networks.
Future works will expand on experimental cases for many other research directions. We plan to keep extending this scalability
research with some other SBI APIs, Java-based and multithreaded controllers, and large-domains clustering with multi-
controllers.
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