
SEQUENTIAL FIT ALGORITHMS EVALUATION USING OBJECT-
ORIENTED PROGRAMMING

Milica Tufegdžić1, PhD; Aleksandar Mišković2, PhD
Academy of professional studies Šumadija, Trstenik, mtufegdzic@asss.edu.rs

Academy of professional studies Šumadija, Kragujevac, amiskovic@asss.edu.rs

Abstract: Modern applications require sophisticated strategies for memory management which allow efficient allocation of the
demanded memory blocks within minimal response time, providing minimum fragmentation. Memory allocation shemas use different
allocator algorithms, such as sequential fit, buddy system and segregated fit. The sequential fit algorithm which will be presented and
evaluated in the terms of internal fragmentation, uses single linear list of all free blocks and different ways to find a proper unused
memory hole of the most appropriate size. Memory chunks’ values and different sets of required processes’ memory are used as input
data in program written in C++ programming language, with the aim to calculate internal fragmentation. The program is written
according to basic principles for memory allocation in the sequential fit algorithm. The results for obtained internal fragmentation in
the cases of using the first-fit, best-fit and worst-fit allocators are analyzed and compared.

Keywords: memory allocators, internal fragmentation, first-fit, best-fit, worst-fit

1. INTRODUCTION

Efficient management of available system resources, such as Central Processing Unit (CPU), memory and Input/Output
devices among competing applications is one of the most crucial operating system tasks. Special attention should be paid
to memory utilization and its allocation while executing sophisticated real-world applications, due to the fact that memory
is often the most critical resource in terms of speed and capacity [1]. The popularity of object-oriented languages, such
as Java and C++, have led to the need for more efficient memory management [2].
Usually, there are two partitions in main memory, one for operating system, so called low memory, and the other named
high memory, which holds the user's processes. As there are many processes at the same time in the input queue waiting
to be brought into memory, there is a need to allocate available memory and satisfy as many of the requests for memory
as possible [3].
There is a variety of memory allocators' design and different models of memory management schemes. Depending on
whether a memory partition for the active process is of fixed or variable size during the existence of the process, there are
fixed and variable allocation schemas [4]. Determining the number of partitions and their size presents the central problem
in fixed allocation schema. Another issue is the problem of internal or external fragmentation. Variable partition schema
minimize fragmentation due to dynamic variation of partition size [5].
Memory management is responsible for dynamic allocation of memory parts from a large block of memory (so called
heap), depending on the users’ requests. There is a possibility for dividing large memory blocks into smaller ones
(chunks). At some point in the time some chunks are allocated to a process (live memory), and some of them are being
freed and thus become available for future allocations. However, some of the freed chunks may not be available for future
allocations and represent garbage. In any case, memory management must keep track about live memory, freed and
garbage chunks [2,6].
Different dynamic memory management techniques, strategies, mechanisms, policies and algorithms are used with the
aim to allow applications to access memory blocks quickly and without wasting too much space which in turn results in
smaller fragmentation [6,7,8,9]. One of the simplest methods implies using one or multiple free lists to keep track of free
blocks. Multiple lists result in better performance [8]. Policies as a conclusion methods for dynamiclly allocating blocks
of memory precisely decide where to remove or put an allocated block. Mechanisms such as sequential fit, segregated
free list (segregated fit), buddy systems, indexed fit and bitmapped fit are examples of policy implementations. They
represent a group of different algorithms and are classified according to the way they find a free block of the most
appropriate size [9,10,11,12].
Sequential Fit algorithms use searching through the list of available holes in memory. The most common are: first-fit,
best-fit and worst-fit. Unused memory holes, i.e. the unused portions of the memory, are found in different ways,

according to the fitting policy, with the aim to satisfy the memory allocation request [6,7]. In order to reduce
fragmentation, some modifications of sequential fit algorithms were proposed, such as lazy-fit algorithm. This algorithm
uses pointer increments as primary allocation method and normal fits as backup allocation method [7]. Improving internal
memory fragmentation can be done by finding the optimal configuration between set of potential solutions of a segregated
free data structure. Optimal configuration is chosen using genetic algorithms [13]. Implementation of reaps as a
combination of regions and heaps provides high performance. Reaps represent generalization of general-purpose and
region-based allocators [14]. In real-time applications, which requires a different memory management approach,
adaptive memory management schema was proposed. This algorithm uses a combination of modified two-level
segregated fit methodology and the ability to move memory blocks. It has proved to be a good solution for embedded
systems where the available memory is limited [11]. Maintaining free chunks of memory on a binary tree improves the
search for the appropriate memory block. This better fit allocation policy has been implemented using nodes in binary
tree for keeping track of the size of the largest chunk, which is available in the left and right sub-trees [2]. Separate
processor for memory management functions embedded in DRAM is used for transferring the allocation and de-allocation
functions' execution from the main CPU. This technique is known as Intelligent Memory Manager [1].
In order to evaluate first-fit, best-fit and worst-fit algorithm, in terms of fragmentation, a program in object-oriented
language C++ was written. The program is tested using predefined memory chunks’ values and different values for
processes as input data. After compiling and executing the code in Visual Studio 2019 Community Edition, Version
16.10.4, unused space is calculated and the results are processed and presented in the form of a diagram. Internal
fragmentation is calculated as the ratio between free fragmented space left and total free memory space and expressed in
percentages, with the aim to compare obtained results.

2. SEQUENTIAL FIT ALGORITHMS

The main task of memory allocator algorithm is to provide real time support for memory allocation [15]. Allocation
method determines the size of fragmentation and well-designed allocators must efficiently deal with memory
fragmentation problems, satisfying four design criteria, such as efficiency of representation, speed of allocation, speed of
"recycling" and utilization of memory [11,16,17,18]. It is hard to choose an appropriate allocation method, because in
most cases it depends on the application [16]. Each method has its own advantages and disadvantages [15].
The simplest implementation maintains a single linked list of free memory chunks (blocks), named free list, in the
allocator. This free list is doubly and/or circularly linked. When a request for allocation memory is made, the free list is
searched with the aim to find an appropriate suitable block. Fit policy is responsible for the way that appropriate block is
found [7,18,19].
For the purpose of this study, sequential fit algorithms were selected because they are the most common and simple to
implement. Depending on the way in which free blocks from the list are allocated, we can distinguish first-fit, best-fit,
and worst-fit algorithm [1,2,6,7,8,9,10,12,15,18]. Next-fit, as a common optimization of first-fit has proven to cause more
fragmentation than best-fit and therefore will be excluded from this study [1,10,19].
First-fit allocator tries to find the first free block that is large enough to to accommodate the incoming process. The free
list is searched sequentially, usually from the beginning [1,6,7,10,18,19]. The list of free blocks is maintained in various
ways, such as First-In First-Out, Last-In First-Out or address-order mechanisms [7,9,10,12]. In best-fit implementation,
searching the free list is done exhaustively, with the aim to allocate the smallest hole that is large enough to satisfy a
request [1,6,7,10,18,19]. In worst-fit policy, allocator searches for the largest hole regardless of the hole position [6,16].
In that case, after finding the hole that fits the worst and fulfilling the application request, small fragmentation is avoided,
because newly created unallocated block as large as it can be [9,16]. All presented sequential fit algorithms use Knuth’s
boundary tag technique for coalescing of free blocks [10,19].

3. ALGORITHMS IMPLEMENTATION IN C++

Taking into account different ways to allocate free blocks, a program in C++ object-oriented programming language is
written, according to algorithms presented above. C++ was chosen because it is convenient for manipulating raw memory
and pointers. Four header files with proper classes' definitions are created, for block, memory, memory manager and
process. For example, class Block contains private attributes such as size and bool variable which indicates whether the
block is occupied or not. The protected section contains constructors, destructors and functions for setting and resetting
private variables' status. In the private section of class Memory, variable size and number of blocks are defined, as well
as a dynamic array of block pointers. Friend class MemoryManager enables direct access to the array of blocks. Class
Process has private attributes size and variable b that represents memory block index in which the process could
potentially be allocated. Special member function constructor, as well as setter and getter block functions are defined in
the public section. Class MemoryManager has the following data members: pointer to memory object, array of pointers
to processes and number of processes. Public section contains the constructor and destructor function, function
AddProcesses for forwarding an array of processes and a function ResetAssignment for releasing blocks from processes.
Functions FirstFit, BestFit and WorstFit are also created, while function PrintProcesses print assigned processes. A part
of the code in which class Process is defined is presented in Figure 1.

Figure 1: Part of the code in class MemoryManage

Files Process.cpp, Memory.cpp and MemoryManager.cpp implement functions from the appropriate header files. File
main.cpp represents main program in which the implemented algorithms for allocating blocks are called for assigned
values of block and process sizes. These values in the form of input data are entered using keyboard.
The part of the program main.cpp, which implements the input of number and capacity of memory blocks, is presented
in Figure 2.

Figure 2: The part of the file main.cpp

4. DISCUSSION AND RESULTS

For the purpose of this study, five free blocks (holes) are chosen with the following capacity: 100 KB, 500 KB, 200 KB,
300 KB and 600 KB, and four processes with randomly chosen sizes. The program is executed in Visual Studio 2019
Community Edition, Version 16.10.4, for ten sets of values presented in Table 1, as Cases 1 - 10. Blocks are marked as
B1, B2, B3, B4 and B5 respectively, while processes are marked as P1, P2, P3 and P4 in accordance to their order in
queue.

Table 1: Process’ sizes in KB as input data
Process Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

P1 212 357 115 98 305 550 220 50 528 372
P2 417 210 500 392 567 100 450 150 428 201
P3 112 468 358 254 319 250 558 350 340 568
P4 426 491 200 532 259 400 333 600 348 324

Results for tested data in Case 6 are presented in Figure 3. After entering the number of memory blocks and their capacity,
number of processes and their sizes, initial status of the processes is checked. After that, processes' statuses are presented,
as well as the blocks to which they were assigned, for first-fit, best-fit and worst-fit algorithms. Unassigned processes are
also presented, and free fragmented space is calculated.

Figure 3: Results of code execution for the input data in Case 6

The results obtained for free fragmented space represent the values of internal fragmentation, while the memory capacity
of unassigned blocks represents external fragmentation. For easier analysis and comparison of obtained results, the values
for internal and external fragmentation in percentages, marked as IF and EF respectively, are calculated using equations
(1) and (2):

IF =
internal fragmentation

total free memory
·100 (%), (1)

EF =
external fragmentation

total free memory
·100 (%). (2)

Calculated values, together with the absolute values for internal and external fragmentation in KB are presented in Table
2. For clarity and simplicity of the results of code execution in all cases, processes and blocks to which they are assigned
are also presented, as well as unassigned processes for all algorithms.

Table 2: Internal and external fragmentation, assigned and unassigned blocks and processes
Case
no.

Algorithm Assigned process block
Unassigned
process/es

Internal fragmentation Unassigned
block/s

External fragmentation

KB % KB %

1. First-fit P1B2, P2 B5, P3B3 P4 559 32.88 B1, B4 400 23.53

Best-fit P1B4, P2B2, P3B3, P4B5 - 433 25.47 B1 100 5.88

Worst-fit P1B5, P2B2, P3B4 P4 659 38.76 B1, B3 300 17.65

2. First-fit P1B2, P2B4, P3B5 P4 365 21.47 B1, B3 300 17.65

Best-fit P1B2, P2B4, P3B5 P4 365 21.47 B1, B3 300 17.65

Worst-fit P1B5, P2B2 P3, P4 533 31.35 B1, B3, B4 600 35.29

3. First-fit P1B2, P2B5, P4B3 P3 485 28.53 B1, B4 400 23.53

Best-fit P1B3, P2B2, P3B5, P4B4 - 427 25.12 B1 100 5.88

Worst-fit P1B5, P2B2, P4B4 P3 585 34.41 B1, B3 300 17.65

4. First-fit P1B1, P2B2, P3B4, P4B5 - 224 13.18 B3 200 11.76

Best-fit P1B1, P2B2, P3B4, P4B5 - 224 13.18 B3 200 11.76

Worst-fit P1B5, P2B2, P3B4 P4 656 38.59 B1, B3 300 17.65

5. First-fit P1B2, P2B5, P4B4 P3 269 15.82 B1, B3 300 17.65

Best-fit P1B2, P2B5, P4B4 P3 269 15.82 B1, B3 300 17.65

Worst-fit P1B5, P3B2, P4B4 P2 517 30.41 B1, B3 300 17.65

6. First-fit P1B5, P2B1, P3B2 P4 300 17.65 B3, B4 500 29.41

Best-fit P1B5, P2B1, P3B4, P4B2 - 200 11.76 B3 200 11.76

Worst-fit P1B5, P2B2, P3B4 P4 500 29.41 B1, B3 300 17.65

7. First-fit P1B2, P2B5 P3, P4 430 25.29 B1, B3, B4 600 35.29

Best-fit P1B4, P2B2, P3B5 P4 172 10.12 B1, B3 300 17.65

Worst-fit P1B5, P2B2 P3, P4 430 25.29 B1, B3, B4 600 35.29

8. First-fit P1B1, P2B2, P3P5 P4 650 38.24 B3, B4 500 29.41

Best-fit P1B1, P2B3, P3B2, P4B5 - 250 14.71 B4 300 17.65

Worst-fit P1B5, P2B2 P3, P4 900 52.94 B1, B3, B4 600 35.29

9. First-fit P1B5, P2B2 P3, P4 144 8.47 B1, B3, B4 600 35.29

Best-fit P1B5, P2B2 P3, P4 144 8.47 B1, B3, B4 600 35.29

Worst-fit P1B5, P2B2 P3, P4 144 8.47 B1, B3, B4 600 35.29

10. First-fit P1B2, P2B4, P3B5 P4 259 15.24 B1, B3 300 17.65

Best-fit P1B2, P2B4, P3B5 P4 259 15.24 B1, B3 300 17.65

Worst-fit P1B5, P2B2 P3, P4 527 31.00 B1, B3, B4 600 35.29

With the aim to compare and conduct evaluation of presented algorithms, the results of the study are shown in Figures 4
and 5, in the form of graphics.

Figure 4: The values of internal fragmentation for best-fit, first-fit and worst-fit algorithms

Figure 5: The values of external fragmentation for best-fit, first-fit, and worst-fit algorithms

In 50% of the presented cases, best-fit algorithm allows all incoming processes to be assigned to appropriate blocks. In
such cases internal and external fragmentation have the smallest values, or are at least equal to the value in the case of
first-fit algorithm. In terms of internal and external fragmentation, worst-fit algorithm is the least efficient, compared to
first-fit and best-fit. Generally, best-fit algorithm has proven to be the best in terms using available memory space, with
the average value of internal fragmentation 16.14%, while the average value of external fragmentation for first-fit and
worst-fit are 21.68% and 31.65%, respectively. The average value for external fragmentation is the lowest in the case of
best-fit algorithm (15.88%), compared to the values for first-fit (24.12%) and worst-fit algorithm (24.71%). In some cases,
such as case 9, the values for internal and external fragmentation are the same for all tree algorithms. This fact can be
related to the process' sizes and their order of arrival, taking into account that the memory partitions are the same size as
in the other cases.

5. CONCLUSION

Efficient memory management is a very important issue, especially in the cases of real-world applications, where memory
blocks are constantly being allocated and deallocated many times during their execution. Another additional issue is that
the time spent for multiple allocation and deallocation actions affects system performances. It can also leads to out-of-
memory conditions, due to internal and external fragmentation.
In this study, different issues of first-fit, best-fit and worst-fit algorithms, as examples of sequential fit algorithms are
compared in terms of assigned processes and blocks, as well as internal and external fragmentation. The results show that
the best-fit algorithm provides the most efficient use of memory in the sense of assigned process and values of internal
and external fragmentation, compared to first-fit and worst-fit algorithms. Due to the fact that there is always a part of
unused free memory blocks, future studies will include combinations of sequential fit algorithms and segregated fit. Some
other methods for efficient memory management such as compaction, paging and segmentation should be considered.

REFERENCES

[1] Rezaei M., Kavi MK. Intelligent memory manager: Reducing cache pollution due to memory management functions.
Journal of Systems Architecture, Volume 52, Issue 1; 2006: 41–55. doi:10.1016/j.sysarc.2005.02.004
[2] Rezaei M., Kavi MK. A New Implementation Technique for Memory Management. Nashville, USA: Proceedings of
the IEEE SoutheastCon 2000 Preparing for The New Millennium; 2000: 332-339. doi: 10.1109/SECON.2000.845587.
[3] Silberschatz A., Galvin PB., Gagne G. Operating system concepts. 9th edition, Wiley; 2012.
[4] Faraz A. A review of memory allocation and management in computer systems. Computer Science & Engineering:
An International Journal (CSEIJ), 6(4), 2016: 1-19. doi:10.5121/cseij.2016.6401
[5] Operating Systems - Memory Management Fixed Partitioning, Variable Partitioning. [accessed 23. July 2021.];
available at https://examradar.com/memory-management-2/
[6] Kabari LG., Gogo TS. Efficiency of Memory Allocation Algorithms Using Mathematical Model. International Journal
of Emerging Engineering Research and Technology, Volume 3, Issue 9; 2015: 55-67.
[7] Chung YC., Moon S. Memory Allocation with Lazy Fits. ISMM '00: Proceedings of the 2nd international symposium
on Memory management, October 2000: 65–70. doi:0.1145/362422.362457
[8] Diwase D., et al. Survey Report on Memory Allocation Strategies for Real Time Operating System in Context with
Embedded Devices. International Journal of Engineering Research and Applications (IJERA), Volume 2, Issue 3, 2012:
1151-1156.

[9] Hasmukhbhai SV. Memory Management in Real-Time Operating System, PhD thesis, Vadodara-390002 (India),
Department of computer science & engineering, Faculty of technology & engineering, The Maharaja Sayajirao University
of Varoda, 2018.
[10] Johnstone MS., Wilson PR. The Memory Fragmentation Problem: Solved?. ACM SIGPLAN Notices, Volume 34,
Issue 3, 1999: 26–36. doi:10.1145/301589.286864
[11] Deligiannis I., Kornaros G. Adaptive Memory Management Scheme for MMU-Less Embedded Systems. 11th IEEE
Symposium on Industrial Embedded Systems (SIES), 2016: 1-8. doi: 10.1109/SIES.2016.7509439.
[12] Özer C. A dynamic memory manager for FPGA applications, Master thesis, Ankara, Turkey, The graduate school
of natural and applied sciences of middle east technical university, 2014.
[13] Rosso CD. Reducing Internal Fragmentation in Segregated Free Lists using Genetic Algorithms. WISER '06:
Proceedings of the 2006 international workshop on Workshop on interdisciplinary software engineering research, May,
2006: 57–60. doi:10.1145/1137661.1137674
[14] Berger ED., Zorn BG., McKinley KS. Reconsidering Custom Memory Allocation. OOPSLA '02: Proceedings of the
17th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications, 2002: 1–12.
doi:10.1145/582419.582421
[15] Awais MA. Memory Management: Challenges and Techniques for Traditional Memory Allocation Algorithms in
Relation with Today's Real Time Needs. International journal of multidisciplinary sciences and engineering, 7(3), 2016:
13-19.
[16] Lindblad J. Handling memory fragmentation. [accessed 04. July 2021.]; available at https://www.edn.com/handling-
memory-fragmentation
[17] Dynamic memory management. [accessed 25. July 2021.]; available at
http://www.bradrodriguez.com/papers/ms/pat4th-c.html
[18] Heikkilä V. A Study on Dynamic Memory Allocation Mechanisms for Small Block Sizes in Real-Time Embedded
Systems, Master thesis, Finland, University of Oulu, Faculty of Science, Department of Information Processing Science,
Information Processing Science, 2013.
[19] Wilson PR., et al. Dynamic Storage Allocation: A Survey and Critical Review. In: Baler H.G. (eds) Memory
Management. IWMM 1995. Lecture Notes in Computer Science, vol 986. Springer, Berlin, Heidelberg; 1995.
doi:10.1007/3-540-60368-9_19

